Testing Procedures for Solid State Lighting Products

DOE SSL Market Introduction Workshop July 9-11, 2008

Status of SSL Testing Procedures

 ANSI C78.377 - Specifications for the Chromaticity of Solid State Lighting Products Published February 2008

IES LM-79-08 - Electrical and Photometric
 Measurements of Solid-State Lighting Products Published
 May 2008

• IES LM-80 - Method for Measuring Lumen Maintenance for SSL Light Sources Expected Summer 2008

Testing to IES LM-79-08

- Goniophotometry
- Integrating Sphere (Photometry and Spectrometry)

Goniophotometry - LM-79-08

- Absolute Photometry
- Type C Goniophotometer
- Color-Corrected Detector

Goniophotometry LM-79-08

THAT A VALACUEED INSICH THE CALIBRATED REPORTED INTO METITION OF ABSOLUTE, HIM ORDITOR OF ABSOLUTE, HIM ORDITOR AND UT MODEL IN PROTECTION OF A USE AND A CONTROLLING HIM ORDITOR AND UT MODEL AND OTHER COMMISSION WHERE USED AS A PART OF THE PROTECTION AND A CONTROLLING HIM OF THE TEXT SILENDED ON THE SPECTRAL RESPONSIVITY OF THE PROTECTION AND A CONTROLLING HIS SPECTRAL

6026

- Luminous Intensity
 Distribution
- Total Luminous Flux
- Zonal Lumen Sums
- IES Format File

Goniophotometry LM-79-08

The results can be used to predict the performance of the luminaire in its application.

- IES Format Files
- Illuminance (Footcandles, Lux)
- Average footcandles within a space, max/min ratios, etc.

Relative Photometry

Luminaires that use conventional lighting sources are usually tested using relative photometry.

- The luminaire is measured.
- The lamp(s) and ballast(s) are removed and measured.
- Luminaire Efficiency can then be calculated
- The luminous intensity distribution is scaled to candela per rated lumen.

Relative vs. Absolute Photometry

Relative

- Typically performed for luminaires using conventional sources
- Luminaire test is referenced to the luminous flux measured from the "bare" lamp(s)
- cd per rated lumens
- Normalizes ballast factor, lamp age
- Includes luminaire efficiency

Absolute

- Luminaire test is referenced to a calibrated standard lamp
- Absolute luminous intensity (cd)
- No luminaire efficiency
- Total luminous flux (lumens)
- Used to calculate absolute luminaire efficacy (lumens per watt)

Relative Photometry

- A quick example: 2-lamp 26W downlight
- Lamp Efficacy: 1800 lm / 26W = 69 lumens / Watt
- Luminaire Input Watts = 54W
- 2 * 1800 lumens = 3600 lumens
- Apply Ballast Factor: 3600 * 0.9 = 3240 lumens
- Apply Luminaire Efficiency: 3240 * 0.6 = 1944
- Divide by Input Watts: 1944 / 54 = 36 lumens / Watt
- Calculated Luminaire Efficacy: 36 lumens / Watt

Goniophotometry LM-79-08

LM-79 does not specify the format of the photometric test reports.

- Indoor (LM-41, LM-46)
- Roadway (LM-31, LM-10)
- Floodlight (LM-35)

Integrating Sphere LM-79-08

- Photometry
- Spectrometry
- Self-absorption
- Size Limitations

Integrating Sphere LM-79-08

- Total Luminous Flux
- Spectral Power Distribution
- Chromaticity Coordinates
- CRI
- CCT

Electrical Measurements

- Input Voltage (RMS or DC Volts)
- Input Current (RMS or DC Amps)
- Luminaire Power (RMS or DC Watts)
- Power Factor (note: $P = I_{RMS} * V_{RMS} * PF$)
- Measurements are made after stabilization is reached.
- Note that stabilization in LM-79 is defined by the photometric readings and electrical power readings.

How Long Does a Test Take?

- Goniophotometry
- Integrating Sphere
- Stabilization Time is the bottleneck.
 Preburning can help if done properly.

What aspects of SSL performance will these test procedures measure?

- Total Luminous Flux
- Luminaire Input Electrical Power
- Total Luminaire Efficacy (lumens per watt)
- Spectral Power Distribution
- Chromaticity Coordinates
 (x,y and u',v')
- CRI (Color Rendering Index)

- CCT (Correlated Color Temperature)
- Spatial Uniformity of Color $(\Delta u'v')$
- Luminous Intensity
 Distribution
- Zonal Lumen Sums
- Lumen Maintenance (L₅₀ and L₇₀)

Testing Procedures for Solid State Lighting Products

Michael Grather

mike@LuminaireTesting.com